Protection of photovoltaic (PV) systems

Application Note AN014 for PV system power line protection
Protection of photovoltaic (PV) systems

Increasingly considered as a viable and cost-effective source of renewable energy, PV systems now range from commercial and residential supplementary energy solutions, to large-scale power generation at solar parks etc.

Installation of PV arrays at roof level, and the string of solar parks in open, exposed locations, makes PV systems highly susceptible to damage from partial lightning currents.

Partial lightning currents can enter the PV system following a direct lightning strike to the external lightning protection system (LPS), or via transient overvoltages from the wider electrical network.

Protecting the PV system

Effective protection against partial lightning currents can be achieved through installation of Surge Protective Devices (SPDs), on both the DC and AC sides of the DC-AC inverter.

The main power SPDs selected should conform to BS EN 61644-1, and be installed in line with the guidance provided in Technical Specification DO CLC/TS 05339-12-2010. The appropriate SPD to protect each side of the inverter is dependent on whether the PV array is protected by an external LPS, and if so, whether the minimum separation distance to BS EN 62305-3 between the LPS and the metallic parts of the PV array has been kept.

Installation on the DC side of the inverter

An SPD specifically designed for use on the DC side of a PV system (location 2 in Figures 1 & 2) should be installed. The number of SPDs required is based on the distance between the PV array and inverter:

- If the distance between the PV array and inverter is less than 10 m, a single SPD installed as close as possible to the inverter, should suffice.
- If the distance between PV array and inverter is greater than 10 m, two SPDs should be installed, one close to the inverter and the other close to the PV array.

The minimum Type of SPD is defined in Table 1. The Fusion ESP combined Type 1+2 SPDs for PV systems - ESP DCCS0512-SPPV and ESP DC100012-SPPV - are suitable for this purpose, providing protection against partial lightning currents, for Lightning Protection Zone (LPZ) boundaries LPZ 2 & 3 to LPZ 3.

Installation on the AC side of the inverter

A lightning current SPD for protecting AC mains power supplies should be installed on the AC side of the inverter, dependent of the state of the external LPS (see Table 1).

The SPD should be positioned as close as possible to the origin of the AC supply (location 1), usually the mains distribution board (MDB), unless the distance between inverter and MDB is greater than 10 m. Where this is the case, two SPDs should be installed: one close to the inverter (location 3) and the other close to the MDB (location 1).

A Fusion ESP combined mains power protector such as the ESP D1 Series or ESP M1 Series, is suitable at locations 1 & 2. As combined Type 1+2+3 SPDs, these units deliver line-to-line and line-to-neutral voltages with full mode protection between all sets of conductors, for optimum surge protective performance.

The Class of LPS (e.g. the Lightning Protection Level (LPL) offered), and the metallic services connected to the structure further determine the appropriate Fusion SPD to be installed (see Table 2).

Table 1: SPD Type according to external LPS configuration - see also Figures 1 and 2

<table>
<thead>
<tr>
<th>External LPS status</th>
<th>Minimum SPD Type required*</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC side, distance PV array to inverter</td>
<td>AC side of inverter</td>
</tr>
<tr>
<td>< 10 m</td>
<td>> 10 m</td>
</tr>
<tr>
<td>No external LPS</td>
<td>Type 2 SPD (PV)</td>
</tr>
<tr>
<td>External LPS (separation distance kept)</td>
<td>Type 2 SPD (PV)</td>
</tr>
<tr>
<td>Type 1 SPD (main)</td>
<td></td>
</tr>
<tr>
<td>External LPS (separation distance not kept)</td>
<td>Type 2 SPD (PV)</td>
</tr>
</tbody>
</table>

* Fusion ESP combined Type 1+2 SPDs for PV systems and Type 1+2+3 mains voltage SPDs are suitable for installation at applicable locations in the PV system and offer enhanced performance over and above Type 1 or Type 1 SPDs.

Table 2: AC protector requirement based on Class of LPS/connected metallic services

<table>
<thead>
<tr>
<th>Installation configuration</th>
<th>SPD (for 3 Phase 415 Vac supplies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No external LPS, underground mains supply</td>
<td>ESP 415 D1 or ESP 415 M1</td>
</tr>
<tr>
<td>No external LPS, overhead overhead mains supply</td>
<td>ESP 415N/VNS or ESP 415 M2Z</td>
</tr>
<tr>
<td>External LPS, multiple connected metallic services</td>
<td>ESP 415 D1 or ESP 415 M1</td>
</tr>
<tr>
<td>External LPS, unknown connected metallic services</td>
<td>ESP 415N/VNS or ESP 415 M4 for LPS to LPZ I & II or ESP 415N/VNS or ESP 415 M2Z for LPS to LPZ III & IV</td>
</tr>
</tbody>
</table>

Note: All the Fusion ESP Protection models above provide at least combined Type 1+2 protection against partial lightning currents 0.5 kV boundaries LPZ 2 & 3 (see note), suitable for installation on the AC side of a PV inverter.

Important

This Application Note refers only to protecting PV systems from partial lightning currents.

For full protection of electronic systems, installation of SPDs to protect all incoming and outgoing services (mains power and data/telecoms lines) needs to be assessed in line with BS EN 62305-3. Please contact us for further information.
Protection of photovoltaic (PV) systems

Increasingly considered as a viable and cost-effective source of renewable energy, PV systems now range from commercial and residential supplementary energy solutions, to large-scale power generation at solar parks etc.

Installation of PV arrays at roof level, and the siting of solar parks in open, exposed locations, makes PV systems highly susceptible to damage from partial lightning currents. Partial lightning currents can enter the PV system following a direct lightning strike to the external lightning protection system (LPS), or via transient overvoltages from the wider electrical network.

Protecting the PV system

Effective protection against partial lightning currents can be achieved through installation of Surge Protective Devices (SPDs), on both the DC and AC sides of the DC-AC inverter.

The mains power SPDs selected should conform to BS EN 61643-11, and be installed in line with the guidance provided in Technical Specification DG CLC/TS 05339-12-2010.

The appropriate SPD to protect each side of the inverter is dependent on whether the PV array is protected by an external LPS, and if so, whether the minimum separation distance to BS EN 62305-3:2010 between the LPS and the metallic parts of the PV array has been kept.

Installation on the DC side of the inverter

An SPD specifically designed for use on the DC side of a PV system should be installed on the DC side of the inverter, dependent of the state of the external LPS (see Table 1).

The SPD should be positioned as close as possible to the origin of the AC supply (location 1), usually the mains distribution board (MDB), unless the distance between inverter and MDB is greater than 10 m.

Where this is the case, two SPDs should be installed - one close to the inverter (location 2) and the other close to the MDB (location 3). A Furse ESP combined mains power protector such as the ESP D1 Series or ESP M1 Series, is suitable at location 2. As combined Type 1+2+3 SPDs, these units deliver both let-through voltage with full mode protection between all sets of conductors, for optimum surge protective performance.

The Class of LPS (i.e. the Lightning Protection Level (LPL) offered), and the metallic services connected to the structure further determine the appropriate Furse SPD to be installed (see Table 2).

Installation on the AC side of the inverter

A lightning current SPD for protecting AC mains power supplies should be installed on the AC side of the inverter, dependent of the state of the external LPS (see Table 1).

The SPD should be positioned as close as possible to the origin of the AC supply (location 1), usually the mains distribution board (MDB), unless the distance between inverter and MDB is greater than 10 m.

Where this is the case, two SPDs should be installed - one close to the inverter (location 2) and the other close to the MDB (location 3).

A Furse ESP combined mains power protector such as the ESP D1 Series or ESP M1 Series, is suitable at location 2. As combined Type 1+2+3 SPDs, these units deliver both let-through voltage with full mode protection between all sets of conductors, for optimum surge protective performance.

The Class of LPS (i.e. the Lightning Protection Level (LPL) offered), and the metallic services connected to the structure further determine the appropriate Furse SPD to be installed (see Table 2).

Table 1: SPD Type according to external LPS configuration - see also Figures 1 and 2

<table>
<thead>
<tr>
<th>External LPS status</th>
<th>DC side, distance PV array to inverter</th>
<th>AC side of Inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 10 m</td>
<td>> 10 m</td>
</tr>
<tr>
<td>No external LPS</td>
<td>Type 2 SPD (PV)</td>
<td>Type 2 SPD (PV)</td>
</tr>
<tr>
<td>External LPS (separation distance >10 m)</td>
<td>Type 2 SPD (PV)</td>
<td>Type 2 SPD (PV)</td>
</tr>
<tr>
<td>External LPS (separation distance not kept)</td>
<td>Type 2 SPD (PV)</td>
<td>Type 1 SPD (PV)</td>
</tr>
</tbody>
</table>

* Furse ESP combined Type 1+2+3 SPDs for PV systems and Type 1+2+3 mains voltage SPDs are suitable for installation at applicable locations in the PV system and offer enhanced performance over and above Type 1 or Type 1+2 SPDs.

Table 2: AC protector requirement based on Class of LPS/connected metallic services

- **No external LPS:** Type 2 SPD (PV) only.
- **External LPS:** Type 2 SPD (PV) only, unless the distance between the PV array and inverter is greater than 10 m, in which case two SPDs should be installed - one close to the inverter and the other close to the MDB.

Application Note: AN014

Please contact us for further information.
Protection of photovoltaic (PV) systems

Application Note AN014 for PV system power line protection

Full specifications of all of the products in the Furse ESP range of transient overvoltage protectors can be found in the Total Solution Product Catalogue.

To request a copy, contact Furse Sales at the address opposite.

Full product data can be downloaded in PDF form from our website at www.furse.com. Copies of the Total Solution Product Catalogue can also be requested from our website.

UK OFFICE
Thomas & Betts Limited
Furse
Wilford Road
Nottingham
NG2 1ER
United Kingdom
Switchboard +44 (0)115 964 3700
Fax +44 (0)115 986 0538
Sales tel. +44 (0)115 964 3800
Sales fax +44 (0)115 986 0071
Email: enquiry@furse.com
www.furse.com

EUROPEAN HEADQUARTERS
Thomas & Betts
European Centre SA
200 Chaussée de Waterloo
B-1640 Rhode-St-Genèse
Belgium
Tel +32 (0)2 359 8200
Fax +32 (0)2 359 8201
Email: enquiry@tnb-europe.com

MIDDLE EAST OFFICE
Thomas & Betts Ltd. Br.
Office 724 IWA West Wing
Dubai Airport Free Zone
PO Box 54567
Dubai
United Arab Emirates
Tel +971 (0)4 609 1635
Fax +971 (0)4 609 1636
Email: furseenquiryme@tnb.com

SOUTH EAST ASIA OFFICE
Thomas & Betts
Asia (Singapore) Pte Ltd
10 Ang Mo Kio Street 65
#06-07 Techpoint
Singapore 569059
Tel +65 6720 8828
Fax +65 6720 8780
Email: asia.inquiry@tnb.com